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ABSTRACT

Six statistical and two dynamical downscaling models were compared with regard to their ability to downscale seven
seasonal indices of heavy precipitation for two station networks in northwest and southeast England. The skill among
the eight downscaling models was high for those indices and seasons that had greater spatial coherence. Generally,
winter showed the highest downscaling skill and summer the lowest. The rainfall indices that were indicative of rainfall
occurrence were better modelled than those indicative of intensity. Models based on non-linear artificial neural networks
were found to be the best at modelling the inter-annual variability of the indices; however, their strong negative biases
implied a tendency to underestimate extremes. A novel approach used in one of the neural network models to output the
rainfall probability and the gamma distribution scale and shape parameters for each day meant that resampling methods
could be used to circumvent the underestimation of extremes. Six of the models were applied to the Hadley Centre global
circulation model HadAM3P forced by emissions according to two SRES scenarios. This revealed that the inter-model
differences between the future changes in the downscaled precipitation indices were at least as large as the differences
between the emission scenarios for a single model. This implies caution when interpreting the output from a single
model or a single type of model (e.g. regional climate models) and the advantage of including as many different types
of downscaling models, global models and emission scenarios as possible when developing climate-change projections
at the local scale. Copyright  2006 Royal Meteorological Society.
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1. INTRODUCTION

General circulation models (GCMs) are our most important tools for estimating the climate under scenarios of
greenhouse gas emissions. However, the discrepancy between the scale at which the models deliver output and
the scale that is required for most impact studies has led to the development of downscaling methodologies.
The field of downscaling is divided into two approaches: the nesting of high-resolution regional climate
models (RCMs) in the GCMs (dynamical) and the statistical representation of desired fields from the coarse
resolution GCM data (statistical).

While there have been several reviews of statistical downscaling methodologies (Giorgi and Mearns, 1991;
Hewitson and Crane, 1996; Wilby and Wigley, 1997; Wilby et al., 1998), there have been few comprehensive
comparisons of model performance. A notable exception is Wilby et al. (1998), who downscaled daily
precipitation at six US regions using six downscaling models, including weather generators, resampling
methods and artificial neural networks (ANN). They found the neural network models to be the least skilful
at reproducing observed rainfall due to poor simulation of wet-day occurrence. The six models were applied
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to output from a GCM climate-change experiment to show that changes in the downscaled precipitation were
generally smaller than the changes in the GCM precipitation. Since Wilby et al. (1998), there has been a large
increase in the number of studies involving RCMs, but few studies comparing these dynamical methods with
statistical models. Wilby et al. (2000) applied NCEP-reanalysis downscaled precipitation from two models
to a hydrological model and compared the daily precipitation, runoff and temperature with observations in
the Animas River basin, Colorado. They found comparable performance from a linear regression statistical
downscaling model and elevation-corrected output from a RCM, which were both better than the raw NCEP
precipitation. Similarly, Murphy (1999) found a linear regression statistical model to have comparable skill
to a RCM in downscaling monthly precipitation and temperature at 976 European stations. Kidson and
Thompson (1998) also found similar skill between statistical and dynamical methods when they downscaled
daily precipitation and minimum and maximum temperature using a statistical regression technique and a
single 50 km RCM at 78 stations in New Zealand.

Since the early 1990s, it has been known that the largest changes in the climate under enhanced greenhouse
conditions were likely to be seen in changes to the extremes (Gordon et al., 1992); however, none of the
above studies have addressed downscaling heavy rainfall. The European Union STARDEX project (STAtistical
and Regional dynamical Downscaling of EXtremes for European regions–Goodess et al., 2005) was devised
to overcome these gaps in the literature and provide recommendations on downscaling methodologies to
stakeholders.

STARDEX had two main objectives:

• To rigorously and systematically inter-compare and evaluate statistical, dynamical and statistical-dynamical
downscaling methods for the reconstruction of observed extremes and the construction of scenarios of
extremes for selected European regions

• To identify the more robust downscaling techniques and to apply them to provide reliable and plausible
future scenarios of temperature and precipitation-based extremes for selected European regions.

This paper addresses both these objectives by presenting validation of the ability of six statistical and two
dynamical downscaling models to reproduce observed heavy precipitation at selected UK stations. Six of the
models were then applied to output from climate-change experiments of the Hadley Centre GCM HadAM3P
(Pope et al., 2000) to construct possible scenarios of UK heavy precipitation for the end of the twenty-first
century.

The paper is divided into the following sections: Section 2 presents the data and methodologies used in
the study; Section 3 introduces the downscaling models; Section 4 presents validations of the models’ ability
to downscale heavy precipitation; Section 5 presents scenarios of precipitation using the downscaling models
applied to a GCM; and Section 6 concludes the study.

2. DATA AND METHODOLOGY

A network of stations in two UK regions with contrasting climates was chosen. The use of two contrasting
regions, the near-continental southeast England (SEE) and maritime northwest England (NWE), was used to
encourage the development of downscaling methodologies that could be applied to a variety of climates. We
selected stations in the two regions that had at least 80% non-missing daily precipitation observations for
at least 80% of the years 1958–2000. This resulted in 28 stations in SEE and 15 in NWE, the locations of
which are shown in Figure 1.

The annual cycle of precipitation and number of days with precipitation >1 mm for the two regions are
shown in Figure 2. While both regions receive higher precipitation and more rainy days in the winter months,
NWE is noticeably wetter being more exposed to the prevailing westerly airflow from the North Atlantic.

The period of analysis was divided into separate calibration (for the statistical models only) and validation
periods. These were 1958–1978 and 1994–2000 for calibration and 1979–1993 for validation. This validation
period was chosen as it was for this period that data were available for the two RCMs run under observed
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Figure 1. Location of stations in the two study regions southeast England (SEE) and northwest England (NWE)

climate conditions nested in ERA-15 reanalysis data (Gibson et al., 1997). These model runs were made
available by the MERCURE project (Machenhauer et al., 1996). Statistical downscaling models were designed
and calibrated using predictors from the NCEP-reanalysis project (Kalnay et al., 1996). Although it would be
desirable to have the statistical and dynamical models forced by the same boundary conditions, experiments
using the RCMs nested in the NCEP reanalyses were not available, nor was ERA-40 data at the time of this
study, for training the statistical models. Still, a comparison of the storm tracks in the ERA-15 and NCEP
reanalyses was carried out by Hodges et al. (2003), who concluded that lower-tropospheric NH storm tracks
were very similar in the two data sets, with ERA-15 having slightly more intense systems.

The focus of the exercise was on heavy precipitation. Therefore, we used a suite of seven precipitation
indices calculated for each season (Table I). The use of climate indices for monitoring extremes is following

Table I. Abbreviations, names and descriptions of the seven indices of daily precipitation used in the study

Index Name Description

pav Mean precipitation Average precipitation on all days
pint Precipitation intensity Average precipitation on days with >1 mm
pq90 Precipitation 90th percentile 90th percentile of precipitation on days with >1 mm
px5d Maximum 5-day precipitation Maximum precipitation from any five consecutive days
pxcdd Maximum consecutive dry days Maximum number of consecutive days with <1 mm
pfl90 Fraction of total from heavy events Fraction of total precipitation from events > long-term

90th percentile
pnl90 Number of heavy events Number of events > long-term 90th percentile
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Figure 2. (a) monthly precipitation and (b) number of days with rain >1 mm averaged across all stations and years for the two regions

the recommendations of Nicholls (1995) and the indices were designed in agreement with the methodologies
of Nicholls and Murray (1999): that they be applicable to a variety of climates; that they are designed to
maximise their independence (low correlation); that only raindays are used to calculate percentiles; and that
they consider the fraction of total rainfall from extreme events. Four of the seven indices relate to very
wet events: 90th percentile; maximum 5-day total; number of heavy events; and proportion of total from
heavy events. One index describes very dry events (maximum number of consecutive dry days) and two
indices describe changes to the entire distribution (mean daily precipitation and precipitation intensity). The
threshold of 1 mm for a wet day was used because previous studies have found that lower thresholds can
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be sensitive to problems such as under reporting of small precipitation amounts and changes in the units of
measurement (e.g. Hennessy et al., 1999). A dry day is defined as having less than 1 mm precipitation. These
indices were used for validation of the downscaling models (Section 4) as well as presentation of changes
in extremes under future emission scenarios (Section 5). FORTRAN software for calculating these indices,
along with 52 other indices of precipitation and temperature, can be downloaded from the STARDEX web
site (http://www.cru.uea.ac.uk/cru/projects/stardex/).

3. DOWNSCALING METHODOLOGIES

The eight downscaling models can be classified as either statistical or dynamical. The statistical models are
all regression based and are constructed by deriving empirical relationships between the large-scale GCM
predictors and the station-scale predictands. Although two of the models contain a stochastic element, there are
no purely stochastic weather generators (e.g. WGEN; Richardson, 1981) that generally use Markov processes
to model rainfall occurrence and possibly amount. Nor are there any circulation pattern downscaling models
that relate observed rainfall to a weather pattern classification scheme (Wilby, 1995), although large-scale
circulation predictors are used in all models. Dynamical models are high-resolution RCMs, nested in the
coarser resolution GCMs.

3.1. Statistical models

The statistical models can be subdivided into direct and indirect methods. Direct methods explicitly model
the seasonal indices of heavy precipitation using seasonal predictors. Their advantage is that they are generally
less demanding numerically due to the smaller data requirements. Indirect methods model daily precipitation
using daily predictors from which the precipitation indices are calculated. Their advantage is that we have
access to the downscaled daily precipitation data that can be used in impact models and for further analyses.

Statistical models can also be divided into single and multi-site methods. Single-site methods model each
station independently. Multi-site methods model all sites simultaneously, thereby possibly maintaining inter-
station relationships, e.g. correlation. Of our six statistical models, four are multi-site methods. However,
in validating the models we did not consider inter-station behaviour, as we were primarily interested in the
ability of the models to downscale rainfall at a single station.

3.1.1. Direct methods.
CCA. Canonical correlation analysis (CCA) is a multi-site method used to model the seasonal precipitation

indices directly using seasonal means of circulation variables. Four predictors were chosen by examining
correlations between the observed precipitation indices and the potential predictors in the NCEP reanalyses.
These are sea-level pressure, relative humidity at 700 hPa, specific humidity at 700 hPa and temperature at
700 hPa. Predictors were examined over the region 35° to 70 °N and 20 °W to 15 °E, however, the size of
the region had little impact on the skill of the model. More details about the selection of potential predictors
can be found in Haylock and Goodess (2004). For each season and precipitation index, a CCA was carried
out using all 15 possible combinations (24 − 1) of the four predictors. The best set of predictors was selected
using cross validation in the training period, whereby each year was removed and the model trained on the
remaining years. The missing year was then hindcast and the skill measured by averaging across all stations
the Spearman rank correlation between the observed and hindcast indices. Therefore, the predictor set varies
between indices and seasons but is the same for all the stations in the region.

The canonical patterns and series were calculated using a singular value decomposition of the cross-
covariance matrix of the principal components (PCs) of the predictor and predictand fields. This is numerically
more stable than the more common method of working with the joint variance-covariance matrix (Press
et al., 1986) and also incorporates the pre-filtering of the data by using just the significant PCs (Barnett and
Preisendorfer, 1987). Bretherton et al. (1992) discuss the benefits of this methodology further and compare
it with other methods of finding coupled modes. The number of PCs retained for the analysis was selected
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by a Monte Carlo process, whereby 1000 PC analyses were carried out using data randomly resampled in
time from the original series (Preisendorfer et al., 1981). In each of the 1000 analyses, the eigenvalues were
calculated. Each of the eigenvalues of the real observations was then compared against the distribution of the
1000 randomly generated values to determine if they were greater than the rank 50 eigenvalue (equivalent to
p < 0.05). Therefore, the number of eigenvectors retained was different for each predictor, predictand and
season.

Once the best set of predictors was chosen using the above-mentioned cross validation procedure in the
calibration period, the model was calibrated using these predictors for the entire calibration period 1958–1978
and 1994–2000 for application to the validation period. This was the method adopted for all the statistical
models.

3.1.2. Indirect methods.
Four of the downscaling methods employ ANN. These regression-based models employ non-linear transfer

functions to map the predictors to the predictands. The predictors were daily values of 26 variables comprising
surface pressure, temperature and humidity as well as upper air measures of wind speed and direction, vorticity,
divergence, humidity, temperature and geopotential height. The predictors were available over several UK
grid boxes at concurrent and forward lagged time steps, giving over 200 possible predictors for each region.
The final indirect method, a conditional resampling method, also uses these same predictors.

MLPK. MLPK is a multi-site multi-layer perceptron (MLP) ANN (Bishop, 1995). The MLP model maps a
set of inputs (the predictors) to a set of outputs (the predictands) via a single set of nodes (the hidden layer)
using non-linear transformations of a weighted sum of the inputs. The weights were chosen to minimise the
error of the output compared with observations using a sum-of-squares error metric. Minimising the sum-of-
squares error leads to a model that estimates the conditional mean of the target distribution. Predictors were
chosen from the full set of over 200 by a stepwise multiple linear regression (SMLR) procedure. Predictors
were chosen using the area-average rainfall and then the same predictors were used to model each of the
stations independently. Two other predictor selection methods were tested: a genetic algorithm method based
on the application of Darwinian evolution theory (Holland, 1975); and a compositing procedure. The SMLR
method performed best with the genetic algorithm yielding far too many predictors for regression analysis. A
two-stage modelling process was adopted whereby rainfall occurrence and amounts were modelled separately.
If the occurrence model predicted a probability of rainfall greater than 0.4, then the amounts model was used
to give the expected rainfall amount, otherwise modelled rainfall for that day was set to zero. Further details
of this model are given in Harpham and Wilby (2005).

MLPS and MLPR. These two single-site methods use a MLP ANN with a single hidden layer. Daily rainfall
in the United Kingdom is generally dominated by frontal activity, which, due to its skewness, is better modelled
using the Gamma distribution (Stern and Coe, 1984). Therefore, we used a Gamma function error metric, as
distinct from the MLPK model that uses a sum-of-squares. In addition, the discrete nature of the occurrence
of precipitation/dry day was incorporated into the error metric with a Bernoulli term (Williams, 1998). The
models were then trained to estimate the probability of rainfall as well as the shape and scale parameters of
a Gamma distribution for the amount of rainfall.

With over 200 possible predictors at each station, we employed a Bayesian regularisation scheme to avoid
over fitting (Williams, 1995), which incorporates into the error metric a term that penalises overly complex
models. We also used automatic relevance determination (ARD; Mackay, 1992) to determine which of the
predictors were the most important. Further details of this model can be found in Cawley et al. (2003).

The difference between the MLPS and MLPR models was the way we interpreted the three output
parameters: the probability of rainfall and the shape and scale parameters. For MLPS, we calculated an
amount of rainfall for each day by multiplying together the three parameters, which gives the expected
amount of rainfall and tends towards the conditional mean. We are primarily interested in heavy precipitation,
which is unlikely to be adequately captured by an estimate of the conditional mean of the data. Therefore, for
MLPR we randomly decided if it was a wet day (based on the probability of rainfall). Then, if it was a wet

Copyright  2006 Royal Meteorological Society Int. J. Climatol. (in press)



DOWNSCALING HEAVY PRECIPITATION OVER THE UNITED KINGDOM: A COMPARISON OF METHODS

day we chose an amount by selecting a random percentile from the Gamma distribution using the modelled
shape and scale parameters. When assessing the skill of the MLPR model (Section 4), we generated 1000
possible realisations and averaged the skill across these. Similarly, when generating scenarios for this model
(Section 5) we averaged across 1000 realisations.

In addition, the MLPS and MLPR models were run 20 times, each time selecting possibly different predictors
and converging on slightly differing outputs. This was because the models were initialised with random
predictor weights. This gave 20 different estimates of the three rainfall parameters. We created separate
realisation for each of the 20 models and averaged the skill or scenario projections across these.

To aid distinguishing the three MLP models in the following discussion, it is useful to remember MLPS is
a simple interpretation of the output parameters to give the expected rainfall whereas MLPR uses resampling
to generate possible daily rainfall series. MLPK is the multi-site method.

RBF. Radial basis function (RBF) is a multi-site ANN. Similarly to the MLP ANN, it maps a set of inputs
to a set of outputs using a non-linear hidden layer. However, the functions that comprise the hidden layer are
quite different. MLP models are based on functions that divide the input data space into hyperplanes (which
can be thought of as two-dimensional planes for a three-dimensional input space), optimised depending on the
outputs. In an RBF network, the hidden layer consists of radial functions: functions whose response decreases
monotonically from a central point. These functions divide the input data space into localised groups (which
can be thought of as three-dimensional spheres for a three-dimensional input space). The radial functions are
chosen from the inputs themselves independently of the outputs, which makes these networks much faster
to train. In this case, a convergent K-means clustering algorithm was used to determine the hidden layer
parameters (Anderberg, 1973). A two-stage amounts and occurrence modelling process was adopted similar
to that used in the MLPK model. Further details of this model are given in Harpham and Wilby (2005).

SDSM. Statistical downscaling method (SDSM) is a two-step conditional resampling methodology. This
multi-site method first downscales area-averaged precipitation using a combination of regression-based
methods and a stochastic weather generator. Secondly, precipitation at individual sites is resampled from
their distributions depending on the downscaled area-average precipitation. The resampling method is unique
among all the models in that it preserves area-average precipitation and the spatial covariance of the daily
rainfall. However, a consequence of this is that downscaled daily rainfall will never be greater than the
maximum observed value, although multi-day totals can be greater. More detail regarding this model, including
evaluations of its performance, can be found in Wilby et al. (2002) and Wilby et al. (2003).

3.2. Dynamical models

HadRM3. HadRM3 is the third generation RCM developed by the Hadley Centre. Based on their
atmospheric GCM, HadAM3 (Pope et al., 2000), this 19-level model has a horizontal resolution of 50 km ×
50 km and four soil moisture levels. It has a comprehensive representation of atmospheric and land surface
physics as well as an explicit sulphur cycle to estimate the concentration of sulphate aerosol particles from
sulphur dioxide emissions.

During the STARDEX project, the Hadley Centre changed the version of their regional model from
HadRM3H to HadRM3P. The main changes were in the representation of clouds and precipitation. Since we
did not have access to either the results of the newer model nested in reanalyses data or the older model nested
in the climate-change GCM, there is a difference in the Hadley Centre RCM we have validated (HadRM3H)
and the one we have used in the climate-change experiments (HadRM3P). However, changes to the moisture
parameterisations, although critical to this study, were undertaken to correct biases that were only observed
in selected parts of the globe outside of Europe (Jenkins, Jones and Mitchell, personal communication).

CHRM. CHRM is an adaptation of HRM, the operational weather forecasting model of the German
and Swiss meteorological services (Luthi et al., 1996; Vidale et al., 2003). This 20-level model has a
horizontal resolution of 55 km × 55 km and three soil moisture levels. It has a full package of physical
parameterisations including a mass-flux scheme for moist convection (Tiedtke, 1989) and Kessler-type
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microphysics (Kessler, 1969; Lin et al., 1983). Vidale et al. (2003) analysed in detail the output of this model
forced by observed boundary conditions and discussed important sensitivities of the model to hydrological
parameterisations. In particular, they found an unnatural persistence of dry and hot conditions during summer
due to insufficient evaporation.

4. VALIDATION OF DOWNSCALING MODELS

To validate the downscaling models, we calculated the Spearman (rank) correlation, bias and debiased root-
mean-square error (RMSE) for each of the precipitation indices and seasons over the validation period
1979–1993. The statistical models were calibrated using the period 1958–1978 and 1994–2000. The
correlation gives a validation of the inter-annual variability of the models independent of any bias or incorrect
variance. Modelling the inter-annual variability is particularly important as it indicates that the models are
correctly reproducing the predictor-predictand relationships. This provides confidence that changes in the
predictors under climate-change conditions will produce correct changes in the predictands. As with all
statistical downscaling methods, an important assumption is that the predictor-predictand relationships remain
stationary in the future. The non-parametric Spearman correlation was used instead of the Pearson correlation
to minimise the effect of outliers from the possibly non-Gaussian distributed indices. We also calculated the
Pearson correlation (not shown) and found the results to be almost identical. From here on, when we mention
correlation we are referring to the Spearman correlation. The bias indicates how the mean of the modelled
indices compares with the observations independent of problems with inter-annual variability. It could be
argued that the bias is the most important skill score if we are only interested in the average change in the
rainfall indices under climate-change conditions. However, some of the direct methods that explicitly model
the indices (e.g. CCA), will, by their design, have a low bias in the verification period. This is therefore
misleading with regard to their true skill. The debiased RMSE measures the average error in the modelled
indices once biases are removed. This indicates problems with incorrectly modelled inter-annual variability
including variance.

Figures 3 and 4 show the correlation for each season for SEE and NWE respectively. Each of the four
frames shows the correlation for each model and precipitation index for a single season. The correlations are
presented as box-and-whisker plots showing the median, inter-quartile range (box), 5th and 95th percentiles
(whiskers) for the correlations across all stations in the region. We have also shown the correlation for a simple
model ‘AREA’ that uses the all-station average daily rainfall as the downscaled rainfall at each station. The
purpose of including this model is to estimate a limit to the skill that can be obtained by a ‘perfect GCM’: a
GCM that reproduces area-average rainfall accurately. Any model that performs better than the AREA model
is doing so because of its ability to downscale the rainfall and not just model the area average. The AREA
model also gives us an estimate of the spatial coherence of the rainfall indices; when the correlation skill of
the AREA model is high, there is less difference between the inter-annual variability of the stations and the
area average and so the inter-station correlation is higher. Note that we are not proposing the AREA model
as a downscaling model but including it for diagnosing the spatial properties of the rainfall indices. Although
we show below that area-average rainfall is a powerful predictor of station rainfall, it is generally poorly
simulated in GCMs. In a comparison of GCM precipitation in five models to observe, Giorgi and Francisco
(2000) found model biases mostly in the ∼40 to 80% range, with some areas exceeding 100%. However,
recent work in STARDEX using rescaled GCM precipitation to model precipitation at the RCM scale over
the Alps (Schmidli et al., 2005) shows that post-processing of the GCM precipitation can yield downscaling
models with comparable skill to statistical models using other GCM predictors.

Figures 3 and 4 show some notable similarities. Firstly, the indices are not equally well modelled: pav
and pxcdd are the two indices with the highest correlations and pfl90, pq90 and pint are the least well
reproduced. This is quite consistent across regions and seasons. One would expect that indices reflecting
the entire distribution (e.g. pav) to be better modelled and those representing the extremes (e.g. pq90) to be
less so. However, this is contradicted by the fact that average precipitation intensity (pint) has among the
lowest correlations and pxcdd has some of the highest. The pint index is a measure of rainfall intensity with
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Figure 3. Correlation of modelled and observed precipitation indices for each season for SEE. Bars show inter-quartile range and median
with 5th and 95th percentiles indicated by outer range

the effect of the number of wet days removed, whereas pxcdd is a count of dry days with no information
about intensity. This implies that the models are doing better at determining the occurrence of rainfall than
the intensity. Additionally, the correlations for the AREA model show that those indices and seasons with
higher spatial coherence (higher AREA correlation) are better reproduced in the models. The AREA model
generally has the highest correlations, suggesting that the area-average rainfall from a ‘perfect GCM’ is
a better predictor than other variables with regard to inter-annual variability. This is more so for SEE
than NWE and is also more apparent in DJF and MAM. Therefore, in SEE during DJF and MAM the
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Figure 4. As for Figure 3 but for NWE

spatial coherence is high but the models are not performing as well as one might expect. This suggests
that there is possibly some process that is driving the inter-annual variability of the precipitation in SEE
in DJF and MAM that is being missed by the models or not captured by the predictors. A second notable
result evident in Figures 3 and 4 is that the spread of correlations among the stations is very large for each
model. In many cases, the range extends into negative correlations, although this is never the case for pav.
This indicates that there is some site-specific behaviour that is not being captured by the regional scale
predictors.
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There are some notable differences between the correlations in the two regions. Firstly, the correlation
varies between the seasons more in SEE than in NWE. In SEE, the correlations are generally higher in DJF
and SON than in MAM and JJA. Secondly, the correlations in SEE are generally higher than NWE in DJF
and SON and lower in MAM and JJA. Both these observations can be explained by the fact that the model
skill is probably dependent on the degree to which inter-annual variability is being driven by the regional
scale circulation. In those regions and times of the year when precipitation is more dominated by localised
convection, we would expect the skill to be lower.

While Figures 3 and 4 show the relative correlation performance of the models for each season, and index,
it is difficult to draw general conclusions about which models perform the best. We therefore assigned the
models a rank based on their correlation relative to the other models for each station, index and season. We then
averaged the rank across all stations, indices and seasons to arrive at an overall measure of correlation skill.
This is shown in Figure 5. Models with a higher rank performed, on average, better than those with a lower
rank. For NWE, the best models were the three neural network models MLPS, MLPK and RBF, followed by
the two regional models, then MLPR, CCA and SDSM. For SEE, the three leading models were the same,
although reordered, followed by CHRM, CCA, SDSM, HadRM3H and MLPR. In both regions, as previously
noted, the AREA correlations outperform all the models, indicating that the area-average precipitation from
a perfect GCM is the best predictor.

We repeated the average ranking exercise for the debiased RMSE and bias statistics, however, we assigned
a greater rank to those models with a lower RMSE or bias. In addition, we used the absolute value of the bias,
ignoring the sign, as we are primarily interested in the magnitude of the difference between the modelled and
observed indices. The average ranks for these two statistics are shown in Figures 6 and 7. The RMSE average
ranks are very similar to the correlation averages (Figure 5) with the exception that the CCA model, which
performs much better with the third highest score in NWE and second highest score in SEE. The debiased
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Figure 5. Average rank of correlation between models averaged across all indices, seasons and stations. Higher ranks indicate better
performance
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Figure 6. As for Figure 5 but for debiased RMSE

RMS score measures the skill of the reproduction of the inter-annual variability of the indices including the
variance. The greater comparative skill of the CCA model with regards RMSE than correlation implies it is
doing a better job with the variance than the other models as it’s correlation skill is low. Again the AREA
skill is greater than all the downscaling models.

The average bias rankings are very different to the correlations. In general, the models with the highest
correlation rankings have the lowest bias rankings. The CCA and MLPR models have the lowest biases
(highest bias ranks) and the MLPS, MLPK and RBF models have the highest biases (lowest bias ranks). An
examination of the box-and-whisker plots of the bias scores (not shown) shows that the three neural network
models with high bias consistently underestimate the heavy precipitation indices. A similar result was found
by Harpham and Wilby (2005), who showed using quantile–quantile plots of the daily precipitation that the
MLPK and RBF models consistently underestimated heavy precipitation and the SDSM model performed
much better. This can be explained by the fact that the regression methods without a stochastic component
that model daily rainfall (MLPK, MLPS and RBF) model the mean expected rainfall for each day. They
will therefore tend to underestimate the extremes. The SDSM model, although modelling mean area-average
rainfall for each day, includes a resampling component, which reduces the tendency towards mean values.
Similarly, the MLPR model contains a stochastic component that diminishes the tendency to underestimate
the extremes. The CCA model, although regression based, is designed to explicitly model the extremes and
so would be expected to have little bias. The comparative AREA bias statistics are moderate. This is to be
expected since, while the inter-station correlations of the indices may be high, we would expect their means
to be different due to the differing exposure, aspect and altitude of the stations.

The three ANN models that tend to underestimate the extremes also have the highest bias for the pxcdd
(maximum dry spell length) index. The MLPS model generally underestimates this index because the way the
daily rainfall is calculated, by multiplying the probability of rain with the gamma shape and scale parameters,
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Figure 7. As for Figure 5 but for bias

it always gives a rainfall amount (however small) and so tends to overestimate the number of days with low
rainfall. The MLPK and RBF models generally overestimate this index.

5. SCENARIOS OF HEAVY PRECIPITATION

Six of the downscaling models were applied to the output of climate-change experiments using the Hadley
Centre high-resolution atmospheric GCM HadAM3P (Pope et al., 2000). HadAM3P data were available for
an ensemble of three 30-year members using the A2 emission scenario (IPCC, 2000) and one B2 scenario
member. For each ensemble member, we had access to HadAM3P data for the control period 1961–1990
and the projected period 2071–2100. After regridding the HadAM3P data to match the NCEP grid with
which the downscaling models were trained, the six models were forced by these data and the precipitation
indices calculated. In Section 4, the neural network models were calibrated using data with zero mean and
unit standard deviation. Therefore, for the control period 1961–1990, each of the predictors was normalised
accordingly and then the 1961–1990 means and standard deviations were applied to the 2071–2100 period
to convert these predictors to the normalised space. The CCA method did not employ such normalisations.
This is because this methodology uses predictors based on large-scale PCs of variables rather than grid point
values for the neural networks, which were found to reliably simulate the GCM due to their large-scale nature.

Figures 8 and 9 show the proportional change in each model for SEE and NWE under the A2 scenario.
Values above 1.0 correspond to an increase in the precipitation index in 2071–2100 compared with 1961–1990
and values below 1.0 correspond to a decrease. The three 30-year A2 ensemble members were treated as one
90-year experiment and so these changes refer to the proportional change in the means for the two 90-year
periods. The spread of values for each model represents the inter-quartile range among the 28 stations (box)
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Figure 8. Factor change in the indices for SEE under A2 scenario

and the 5th and 95th percentiles (whisker). These figures show a general agreement among the models to
wetter conditions in winter and drier conditions in summer. However, there is a notable spread among the
models. In particular, in DJF the MLPS and MLPR models suggest there is little change in the indices, and
in SON in SEE the CCA model predicts a larger decrease in the indices than the other models. In the latter
case the large spread of values for the CCA model in SON across all the stations suggests that there is more
uncertainty in the projections for this season, however, the other models have generally lower ranges. The
differences in the values between models are at least as large as the differences between stations for a single
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Figure 9. As for Figure 8 but for NWE

model. Similar plots were done for the B2 scenario (not shown) that matched the A2 results except that all
the changes were closer to the line of no change. Importantly, the changes from A2 to B2 for a single model
were of the same order of magnitude as the spread between models for a single scenario. This highlights
the importance of incorporating many types of downscaling models into climate-change projections at local
scales.

Since no one downscaling model, or group of models, stands above all others in terms of performance
across all skill scores in the validation exercise (Section 4), we have no way to distinguish among the different
projections for the different models. Therefore, we have treated the differing results from the models as a
source of uncertainty. In addition, we cannot assign probabilities to the two available emission scenarios and
must assume these to be equally likely (IPCC, 2000). With six models and two emission scenarios, we can
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Figure 10. Change in indices using six downscaling models for Oxford under A2 (asterix) and B2 (circles) scenarios

produce a 12-member distribution of modelled changes in each of the indices for each station. Note that this
still underestimates the uncertainty as we have used a limited number of downscaling models with only two
emission scenarios forced by a limited number of ensembles from a single GCM. The use of only a single
GCM is particularly important as it is acknowledged that the GCM is still the largest source of uncertainty
in regional climate-change projections (Giorgi et al., 2001). Figure 10 shows the changes in the indices for
the station Oxford in SEE. For some indices and seasons, the spread is very small (e.g. pav in JJA) but for
others it is much larger (e.g. pnl90 in DJF). Importantly, for each index the variability among models is of
the same order of magnitude as the variability between the two scenarios. To summarise the changes across
all stations, Figure 11 shows the range of changes in each of the indices for all the stations in each region.
The previously noted tendency to wetter conditions in DJF is very evident and less so is the tendency to drier
conditions in JJA and wetter conditions in MAM. In these three cases, the extremes show similar tendency
to the total precipitation.

6. CONCLUSIONS

Six statistical and two dynamical downscaling models were compared in their ability to downscale seven
seasonal indices of heavy precipitation to the station scale. Models based on non-linear ANNs were found
to be the best at modelling the inter-annual variability of the indices; however, their strong negative biases
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Figure 11. All-model all-scenario change in indices

implied a tendency to underestimate extremes. This was due to the design of these models to reproduce the
conditional mean precipitation for each day. A novel approach used in one of the ANN models to output
the rainfall probability and the gamma distribution scale and shape parameters for each day meant that
resampling methods could be used to circumvent the underestimation of extremes. It also means that Monte
Carlo simulations could be used to generate probability distributions for the change in the indices under
climate-change conditions, however, this was not explored in this study as only one model generated such
probabilistic output. The incorporation of probabilistic output into other downscaling models would be of
great benefit to constructing probabilistic scenarios of extremes.

The correlation skill of a simple model that used the daily area-average observed rainfall as the downscaled
rainfall was used as a proxy for spatial coherence of the indices. This showed that skill among the eight
downscaling models was high for those indices and seasons that had greater spatial coherence. Generally,
DJF showed the highest downscaling skill and JJA the lowest. The rainfall indices that were indicative of
rainfall occurrence, such as pxcdd and pav, were better modelled than those indicative of intensity.
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Although four of the statistical models were multi-site models, we have not addressed the skill of the
models in maintaining inter-station relationships. We would expect this to be higher in the multi-site models.
Incorporating inter-site statistics into the single-site models would be of benefit to users of such downscaled
data to ensure consistent scenario time series across stations.

Six of the models were applied to the Hadley Centre GCM HadAM3P forced by emissions according to two
SRES scenarios. This revealed that the inter-model differences between the future changes in the downscaled
precipitation indices were at least as large as the differences between the emission scenarios for a single
model. This implies caution when interpreting the output from a single model or a single type of model (e.g.
RCMs) and the advantage of including as many different types of downscaling models, GCMs and emission
scenarios as possible when developing climate-change projections at the local scale.
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